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Vanadium as an important national strategy resource is widely used in many fields due to its excellent physi-
cochemical properties. Much attention had been focused on recovering vanadium from vanadium titano-mag-
netite and stone coal as they were the main vanadium resources in China. Sodium roasting technology was the
earliest technology applied in recovering vanadium, high recovery efficiency of vanadium was obtained along
with serious environment problem like corrosive gases and hazardous wastewater. Calcium roasting technology
avoided above problems, but high energy-cost and low recovery was remained. Non-salt roasting technology was
suitable for limited vanadium resource. Vanadium was leached out after roasting and the leaching medium was
divided into three parts according to the roasting technology. Recover process of vanadium depended on the
vanadium species and pH in the leaching solution. Hydrolysis was the easily technology with most impurities.
Ammonium precipitation was the common process for every technology. And high purity of V,05 was obtained
by calcining precipitation of recovery process. Overall, the industry of vanadium leaching was still under-
developed, and much intensive research work was needed.

1. Introduction

Vanadium is in the first transition series of the periodic table, spe-
cifically in the 5group (group VB), which accounted Z = 23 in the
periodic table, and being considered as a refractory metal due to its
high melting point. It was discovered in 1831 by Andrés Manuel del
Rio, from a lead mineral from Zima pan, Mexico, and was named
Vanadis, the Scandinavian Goddess of love, beauty and fertility, due to
its multicolored compounds [1-3]. As it had an electronic configuration
of [Ar]3d®4s?, the vanadium valence could be V(II), V(III), V(IV) and V
(V), and V(IV) and V(V) were the most common oxidation states [4].
The vanadium and its compounds as important national strategy re-
sources were widely used in petrochemical industry, catalyst, iron steel,
due to their excellent physicochemical properties and also being called
“vitamins of modern industry” [5-10]. In China, the vanadium in low
valence was deposited in vanadium titano-magnetite [11] and stone
coal [12]. Usually the recovery of vanadium was in its high valence,
and some pre-treatment was needed before leaching out vanadium,
aiming at oxidizing the vanadium in low valence into high valence,
which had high solubility and easy to be leached out [13,14].

2. Leaching out of vanadium

The converter vanadium slag was produced by the titan-magnetite

E-mail address: cqupenghao@126.com.

https://doi.org/10.1016/j.jece.2019.103313

smelting process [15], which amounts of lots of vanadium, iron, man-
ganese, aluminum and silicon. The researchers found that the main
phases in the converter vanadium slag were spinel phase, silicate phase
and inclusion phase. The vanadium was commonly existed as spinel
phase like Fe,VO, [16-18] (showed in Fig. 1), which was hard to leach
out with direct leaching. The principle of recovering vanadium was to
oxidize V(III) to acid-soluble V(IV) compounds and/or water-soluble V
(V) compounds, and then to dissolve it by acid leaching and/or water
leaching. Often, some pre-treatment technologies like roasting [19-21],
and intensified technologies were applied to enhance the recovery
process of vanadium.

2.1. Roasting

2.1.1. Sodium roasting technology

The traditional roasting technology was sodium roasting technology
which could be traced back to the first salt-roasting technology by
Bleecker in 1912 [22]. The sodium salts (Na,CO3;, Na,SO,4 or NaCl)
were mixed with vanadium slag and roasted in furnace at high tem-
perature [23-25]. During the roasting process, V(III) in vanadium slag
was oxidized by oxygen to maximal extent and transformed into sodium
vanadates. The chemical reactions were as followed [26]:

4Nacl+02 g 2Na20 +2C12T (1)
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Fig. 1. The crystal structure of FeV,04.

The formation of Cl, could catalyze the oxidation.

2V,0; 4+ 0, = 2V,0, (2)
3CL+3V,04 — 2VOCL+2V;,05 3)
4VOCL+30, — 2V,05+6Cl, @
xNa,0 +yV,05 — xNa,0-yV,0s 5)

The ratio of x to y in Eq. (5) was closely related to the roasting
conditions. And then the vanadium was leached out followed by water-
leaching or acid leaching.

Jiang [27] investigated the leaching process of vanadium and
chromium by sodium salt (Na,CO3) roasting-(NH4),SO,4 leaching, the
results showed that 94.6% vanadium and 96.5% chromium were lea-
ched out. Zhang [28] leached out vanadium from stone coal with 6 wt.
% NaCl and 10 wt.% Na,SO, as roasting additive. During the roasting
process, the vanadium-bearing muscovite with quartz was converted to
feldspar group minerals (albite, orthoclase and anorthite). The findings
could produce some potential methods for recovery of vanadium from
stone coal. Wang [19] roasted the red cake with 22.5 g NaOH/25 g red
cake at 170 °C for 60 min, and then leached with water at 98 °C for
60 min with liquid-to-solid ratio of 3.3:1 mL/g, the leaching efficiency
of vanadium was up to 97.0% and V5,05 with purity 99.3% was ob-
tained after purified and roasting. Stepwise sodium roasting-water
leaching technology [25] was applied to recover vanadium and chro-
mium from high-chromium vanadium slag. About 87.9% of the vana-
dium could leach out at first step of Na,COs-roasting-water-leaching at
roasting temperature of 800 °C for 120 min. The V3" was firstly acti-
vated by the oxidation of Fe** in the spinel lattice and then reacted
with Na,CO3 and O, to generate high solubility vanadium oxides.

2.1.2. Calcium roasting technology

During the sodium roasting process, some corrosive gases like Cl,,
SO, and HCI emitted due to the addition of Na,SO4 or NaCl, and they
were harmful to environment. Calcification roasting was a clean tech-
nology used as an alternative to sodium roasting.

In the calcium roasting technology, limestone, lime or other calcium
compounds were mixed with vanadium slag and grounded to fine
particles, and then roasted in vertical kiln [29-31]. During the roasting
process, the vanadium reacted with calcium to form calcium vanadates
and then leached out by acid leaching [29,32-34] and alkaline leaching
with carbonate or bicarbonate solution [35,36]. The principle was in-
vestigated, and the roasting process were divided into four main parts
ranged from the roasting temperature.

(1) FeO was oxidized at 300 °C.

2Fe0+0, — Fe,04 (6)
(2) The complex-compound decomposed at 400-500 °C.

Fe,05-Si0, — Fe,0; + SiO, %)
(3) Spinel phase was oxidized as the temperature arose.

2F62VO4+2F60+02 - 2Fe203'\/203 (8)

Journal of Environmental Chemical Engineering 7 (2019) 103313

2Fe;05-V,03 + O, — 2Fe;03-V,04 9
2F6203'\/204 + 02 d 2Fezo3'\/205 (10)
Fe,03-V,05 — Fe, 03 + V,05

(4) The formation of calcium vanadates.

Fe,03 + V,05 — 2FeVO, 1n
2FeV0,+Ca0 — CaV,06+Fe,0; (12)
VO,+Ca0 — CaVOs; (13)
V,05+3Ca0 — Ca,V,04 14
3V0,+Ca0 — CaV;0, (15)

The calcined products were confirmed by the roasting temperature
and also the addition ratio of Ca/V [37].

Calcification roasting-acid leaching of high-chromium vanadium
slag was conducted to elucidate the roasting and leaching behaviors of
vanadium and chromium [30]. The results showed that more of the CaO
was likely to combine with vanadium and reacted to generate calcium
vanadium which led to high leaching efficiency about 91.14% for va-
nadium, while chromium was remained in the leaching residue, only
8.48% was leached out. Xue [31] studied the isotherm and non-iso-
therm oxidation kinetics of converter vanadium slag with addition of
calcium oxide. The results showed that the whole oxidation process
could be divided into two parts, the first part followed the equation
[1-(1-x)*®]1= kt with Ea =20.42kJ/mol at lower temperatures of
400-500 °C, and second part was followed [(1- x)™/-1]%> = kt with Ea
=227.66kJ/mol at temperature higher than 500 °C. Xue [21] in-
vestigated the roasting process of high-chromium vanadium slag with
CaO and microwave heating. The roasting products of vanadium was
changed with the dosage of CaO. At low m(Ca0)/m(V,0s), CaV,04 was
formed, and then converted into CaV,0, and CaVO; as m(CaO)/m
(V505) increased. The microwave irradiation could decrease the parti-
cles size and shorten the roasting time and achieved leaching efficiency
of 98.29% for vanadium under optimal conditions. Zhang [38] studied
the roasting process of vanadium slag with lime. The heating rate had
significant effect on the recovery of vanadium and lowering heating
rate could achieve high recovery of vanadium. The formation of
Ca,V,0, was more beneficial for vanadium leaching with sulfuric acid.

2.1.3. Non-salt roasting

Chromium spinel was commonly existed in the vanadium slag and
could be oxidized to hexavalent chromium under alkaline roasting
conditions. While the hexavalent chromium was a toxicity heavy metal
contaminant and had being classified in Group 1 (carcinogenic to hu-
mans) by the International Agency for Research on Cancer (IARC). Du
[15,35,39] introduced a new method for recovery of vanadium with
non-salt roasting and ammonium leaching. This method had the fol-
lowing features. As there were no salts added during the roasting pro-
cess, the chromium spinel existed in the vanadium slag could not
converter to carcinogenic chromate salts, avoiding the cost and disposal
of chromium waste. Also, the vanadium could be directly leached out as
NH4VO; and separated after cooling crystallization. The leaching effi-
ciency of vanadium could up to 90% while the ammonium salt replaced
with (NH4)2C204. Xue [40] compared the microwave blank roasting
and conventional blank roasting on oxidation behavior, microstructure
and surface morphology of high-chromium vanadium slag. They found
that the normal spinel oxidized to inverse spinel at 400 °C and then
decomposed at 600 °C. As roasting at high temperature, the minority of
Cr®* ions in the spinel phase were incorporated into VO, to form the
Crg.07V1.9304 or CrVO,4. Wang [41] found that the roasting technology
was dependent on the occurrence state of vanadium in stone coal. If the
vanadium existed in amorphous phase form, the non-salt-roasting
technology was enough leaching out vanadium. While the vanadium
was in vanadium-bearing crystalline phase, the additive agent was
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Fig. 2. Relationship between the status of vanadium in aqueous solution and
the vanadium concentration and pH (25 °C).

needed in order to achieve high leaching efficiency of vanadium.
2.2. Leaching

The vanadium was leached out by water-leaching, acid-leaching or
alkaline leaching after the vanadium slag/stone coal roasted.

2.2.1. Acid leaching

The calcium roasting technology was usually combined with acid
leaching. The calcium vanadate was leached by H,SO, and dissolved as
VO, ", V10025°~ or other ions determined by the pH of the leaching
solution and the vanadium concentration (showed in Fig. 2) [29,34,42].

Ca,V,05 + 4H,80, — 3CaS0, + (VO,),S0, + 4H,0 (16)

In order to enhance the leaching process and improve the leaching
efficiency of vanadium, some technologies were applied. The addition
of oxidant like NaClO, KCIO3 could improve the leaching efficiency
[43]. Dai and Sun [44] found that the addition of oxidant could im-
prove the leaching efficiency of vanadium from 14% to 73% during the
direct acid leaching process. Tian [45] used an oxidant named SMTVO01
to enhanced the acid leaching process of vanadium from stone coal and
found that the leaching efficiency of vanadium was increased from 20%
to 80% and also the dosage of H,SO, was reduced 8%. Pressure
leaching technology was also applied. Zhang [46] conducted the
leaching process with microwave heating and electric heating under an
oxygen pressure of 0.4 MPa, he found that the leaching efficiency of
vanadium was up to 96% with microwave heating while only 46% with
electric heating under the same conditions. Liu [47] introduced electro-
oxidation technology to enhanced the leaching process of converter
vanadium slag in acidic medium, a high vanadium leaching ratio
(> 70%) was achieved under the optimal leaching condition. Li [48]
found the leaching efficiency of vanadium was over 90% during the
two-stage counter-current leaching procedure at partial oxygen pres-
sure of 1.2 MPa and reaction temperature of 150 °C-180 °C. And the
leaching kinetic was followed shrinking core model with a new variant,
which the controlling step was both the interfacial transfer and diffu-
sion. Otherwise, other technologies were also applied to leach out va-
nadium, like alkaline roasting-acid leaching [49], sulfuric acid baking
and leaching [50], microwave-aided roasting [21,46,51,52].

2.2.2. Alkaline leaching

The metal elements like Fe, Al, and Mg in vanadium slag had high
solubility in acidic medium, they could leach out along with vanadium
during the leaching process and produced a large amount of impurities
in the leaching solution, and they were hard to be separated. The al-
kaline leaching offered selective leaching of vanadium [53]. Vanadium
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slag roasting with sodium salts or calcium salts could also being leach
out in alkaline medium.

Ca3VZOg + 3N3.2C03 d 3CaCO3 + 2N8.3VO4 (]7)

Na,0-V,05 + 4NaOH — 2Na;VO, + 2H,0 (18)

The sub-molten salt technology developed by the Institute of
Process Engineering, Chinese Academy of Sciences had been success-
fully applied for treating amphoteric ores to extract valuable metals
[54-60]. The core of this technology was continuous liquid phase oxide
of vanadium slag in a sub-molten salt medium under atmospheric
pressure which was associated with high alkaline concentration
(usually above 50%), high boiling point, high ionic strength. The
NaNO; was introduced to the decomposition process of vanadium slag
in molten NaOH/KOH solution. The vanadium compounds were oxi-
dized and formed Na3VO, to leach out, as which had high solubility in
alkaline medium. High pressure leaching technology was also applied.
Wei [61] investigated the dissolution kinetic of pure vanadium trioxide
in an alkaline-oxygen system. The vanadium dissolution rate was in-
creased with the increasing of reaction temperature and oxygen partial
pressure while the stirring speed and sodium hydroxide concentration
had very little effect. Electro-oxidation technology and H,O, were in-
troduced to enhance the leaching process and improved the leaching
efficiency of vanadium [53,62-65]. The OH™ /H,O was activated by
electricity and formed -OH with high oxidation. The vanadium in low
valence was reacted with -OH and been oxidized to vanadium in high
valence which had high solubility in alkaline medium. Li [25,36] used
calcium-roasting technology combined ammonium carbonate to re-
cover vanadium. She found that the ammonium carbonate could se-
lectively leach out vanadium but maintain phosphorous and other im-
purities. Also, the ammonium could be recycled into the leaching
process and made this technology environmental-friendly. While the
leaching efficiency of vanadium could achieve 96.0% under optimal
conditions.

3. Recovery of vanadium
3.1. Hydrolysis

In acidic medium, the vanadium was existed as polymer ions, like
V1002867, HV100285', H2V100284-, etc. It could hydrolyze and form
precipitation (red cake) [66] at high temperature as followed:

6Na,H,Vi40,5 + 7H,SO; + (n+13)H, O— 5Na,Vi,03;
.nH, 0| +7Na,S0,+13H,0 (19)
The red cake contained many impurities and the content of vana-

dium was only about 85% in common. In order to obtain high content
vanadium oxides, the red cake needed further treatment.

3.2. Ammonium precipitation

Ammonium salts were widely used in precipitate vanadium in
acidic/alkaline medium. In the acidic medium, the pH of vanadium
solution was adjusted to 1.8-3.0, the vanadium was existed as polymer
ions and precipitated as ammonium hexamethylate by adding ammo-
nium salts like NH4Cl, (NH4)>SO,4 and the reaction occurred as followed
[67]:

3VypO%+10NH +8H* — 5(NH,)2V;056 | +4H,0 (20)

While in the alkaline medium, the vanadium was precipitated as
ammonium metavanadate by adding NH4CI [68].

VO3;+NH} — NH,VO;] (21)

The final product, V,0s, was obtained by roasting the precipitation
in kiln at 500 °C and the purity of V.05 was more than 99%.
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(NH4),Vs016 = 3V,05+2NH; + H,O (22)
2NH,VO; — V,0s+NH; + H,0 (23)

Zhang [68] investigate the ammonium salt precipitation process of
vanadium in alkaline medium and ammonium salt precipitation of
vanadium in acidic media from the stripping solution of N235-P507
synergistic extraction system. The precipitation in alkaline medium was
easier while the purity of V505 was higher in acidic medium. The Na
had little effect on the precipitation efficiency of vanadium and the
purity of V,0s while P had significant effect on the precipitation effi-
ciency and the purity in acidic medium. Jiang [67] introduced a cleaner
and novelty leaching medium, (NH4)>SO4-H,SO4 synergistic system, to
leach out vanadium after calcification roasting. About 99.75% of va-
nadium was precipitated as (NH4),VsO16 as the system pH adjusted at
8.0 and the purity of 95.71% V,0s5 was obtained after roasting. The
whole recovery of vanadium from high-chromium vanadium slag was
above 93%.

3.3. Adsorption

Adsorption technology played a vital role in wastewater treatment
owing to high efficiency, simple operation and ease of regeneration
[69-75]. Melamine possessing three free amino group and three aro-
matic nitrogen atoms in its molecule, was also used to absorb vanadium
and showed great performance [42,76]. The results showed that the
adsorption capacity was 1428.57 mg/g and the adsorption kinetics was
followed pseudo-second-order kinetic model and the adsorption model
was fitted well with Langmuir and Freundlich models. Xiao [77] in-
vestigated the adsorption performance of vanadium on natural kaoli-
nite and montmorillonite. The results showed that the kinetics of V(V)
adsorption on kaolinite and montmorillonite followed pseudo-second-
order kinetic model. Also, the Langmuir model indicated that natural
montmorillonite and kaolinite had low affinity for V(V) anions with
maximum adsorption capacity of 0.98 mg/g and 0.78 mg/g, respec-
tively.

3.4. Solvent extraction

Many researchers had focused on recovery of vanadium from solu-
tion with solvent extraction with various extractants [78-82]. A series
of extractant had been used to leach out vanadium from aqueous so-
lution, like di(2-ethylhexly) phosphoric acid (D2EHPA) [83-86], tri-
butyl-phosphate (TBP) [87], 2-ethylexyl phosphoric acid mono 2-
ethylexhyl ester (EHEHPA) [88], bis(2,4,4-trimethylpentyl) phosphoric
acid (CYANEX 272) [79], trialkylamine (N235) [12,80,82] and trica-
pryl-methyl ammonium nitrate (A336) [81,89].

The vanadium (V) in the solution mainly existed as VO,*,
V0,804, HaV10028% and HV;00.5> with the pH ranged from O to 4.
The extractant N235 was able to leach out vanadium of anionic form
through ion-exchange type extraction as followed [90]:

2[R3Nloe + H;SO; — [R3NHI3 (SO4)*~Jorg 24)

[RsNH]Z(SO4)>~Jorg+2V0,S0; — 2[RsNH] + VO,S0; Jorg + 2S0;

(25)
2[RsNHJ3(SO,)* Jorg + HyVig03s — [ReNHI{H,Vio035 Jorg + 250
(26)
5[RsNH]2 + (SO4)>]org+2HV;(0,55~ — 2[RsNH]5 + HV;,035 |org
+ 5505 27)

Then the organic phase was stripped in multi-stage count-current
process by concentration NaOH solution, and then the vanadium was
precipitated as ammonium metavanadate according to Eq. (21).

Zhang [91] investigated the selective extraction process of vana-
dium with N235 and P507. About 95% vanadium was leached out and
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the impurity remained in the solution after one-stage extraction. Ning
[92] investigated the vanadium species of vanadium in the extraction
solution. They found that the extraction mechanism was similar to the
CO,, adsorption through amines, which was described as that the one N
atom and two H atoms in -NH, group combined with one H atom (from
V—OH group) and two O atoms (from V=O groups) in H,V,0, as
(N—H) and (O—H) during the extraction process. Lee [93] used 5,8-
diethyl-7-hydroxydodecane-6-oxime (LIX 63) and 2-ethylexyl hydrogen
2-ethylhexyl phosphonate (PC 88A) to leach out vanadium from sulfate
solution under initial pH 1.2-6. The extraction of vanadium by PC88A
was a cationic exchange process, while changed as the equilibrium pH
increased by LIX 63. Hear-Kyung Park [94] investigated the extraction
process of vanadium with mixture of 20% (v/v) Alamine-336 and 5%
(v/v) tri-butyl phosphate (TBP). The extraction isotherm results showed
that 99% vanadium was leached out through two-stage counter-current
process and the purity of 98.4% V505 could be obtained after stripping,
precipitated and roasting.

3.5. Ion exchange

In addition, there were also some reports about the recovery of
vanadium with ion exchange or resin exchange in acidic medium
[95-101]. The adsorption of vanadium by the resin was expressed as
followed [102]:

R;N+HCI — (RsNH)CI (28)
4(RsNH)CI4+H,V;00% — (RsNH)4-H,VigOq5 + 4CI (29)
5(RsNH)Cl4+HV;(0,55~ — (RsNH)s-HV;oO,5 + 5CI- (30)
6(RsNH)Cl+V;g056™ = (RsNH)g- V1905 + 6CI- (31)

The adsorption process was stopped as the vanadium concentration
decreased to an appropriate value. And then, the loaded resin was
striped with concentration NaOH solution, and the reactions were de-
scribed as followed:

(R;NH),-H,VigOss + 10NaOH — 4R;N+10NaVO;+8H,0 (32)
(RsNH)5-HV;yOy5 + 10NaOH — 5R;N+10NaVO;+8H,0 (33)
(RsNH)4- V1025 + 10NaOH — 6R;N+10NaVO;+8H,0 (34)

Last, the concentrated vanadium solution was used to produced
V,0s according to Egs. (21) and (23). The recovery of vanadium by this
method was generally above 99% [102].

Zhang [103] compared the ion exchange technology and solvent
extraction technology for recovery of vanadium from sulfuric acid leach
solutions. The results indicated that vanadium (V) was more favorable
being leached out by ion exchange technology and vanadium (IV) was
easily being leached out by solvent extraction technology. During the
ion exchange experiments, five kinds of resins were tested and the re-
sults showed that the vanadium (V) was significantly adsorbed by
ZGA414 resin, the adsorption efficiency was about 99.9% at pH 2.5 and
the process would be affected by concentration Fe (III). About 99% of
the vanadium (IV) could be leached out by five-stage counter-current
extraction process during the solvent extraction experiments. Li [104]
used resin 201, D314 and 717 recovered more than 99% vanadium
from hydrochloric acid leaching solution. And these three resins had
their own merits, resin D201 was suitable for adsorption in strong
acidic medium and had maximum loading of vanadium, resin 717 had
fastest adsorption rate in weak acidic medium.

4. Discussion

In summary, the measurement and technology for recovery of va-
nadium could be described in Fig. 3. Although some techniques for
vanadium recovery had been proposed and developed, it was also
needed to further development. For the purpose of meeting the world's



H. Peng

Vanadium Source
Sodium Roasting
Calcium Roasting

Roasting

Non-salt Roasting

Acid Leaching
Leaching Alkaline Leaching

‘Water Leaching

Journal of Environmental Chemical Engineering 7 (2019) 103313

V05
Calcinations

Sl Hydrolysis

Extraction

Recovery > A
Precipitation
Ton

Exchange

Adsorption

S
>

Fig. 3. Flowsheet of recovery of vanadium from vanadium source to V,Os.

increasing demand for vanadium, these following aspects which should
be strengthened and paid more attention to are listed below.

1 The vanadium valence and species existed in vanadium-bearing
resources. Although some researches had been done, the effect of
existing form and valence of vanadium on the leaching efficiency of
vanadium from vanadium-bearing resources had not been com-
pletely understood until now. The development of innovative tech-
nology and the improvement in the leaching process depended on
breakthroughs of studies on their existing forms.

2 Recovery of vanadium from all vanadium-bearing resources.
Vanadium and its compounds were widely used in many fields, it
could be recycled and reused. The technology for recovery of va-
nadium from all vanadium-bearing resources should be developed.

3 Reaction mechanism during every step of recovery of vanadium.
Dialyzing the reaction mechanism was beneficial to choose the right
technology for vanadium treatment.

4 The development of specialized equipment for leaching out vana-
dium. The suitable equipment for vanadium extraction would en-
large production scale and reduce specific energy consumption and
costs, also realize auto control in vanadium leaching process and
relieve environmental stress.
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Lead sulfate was chose to precipitate chromium (VI) based on the difference of the solubility between
lead sulfate and lead chromate. The effects of parameters on the precipitation efficiency of chromium
including reaction temperature, reaction time, and initial pH of solution and dosage of lead sulfate were
investigated. Results showed that the initial pH of solution and dosage of lead sulfate had big influence
while reaction time and reaction temperature had little. The concentration of chromium (VI) could reduce
from 0.2 mol/L to 0.0015mmol/L (0.08 mg/L) at pH value of 13.90 and the dosage of lead sulfate as n
(PbSO4)/n (K,CrO4) =4. The XRD result of precipitation was consistent with the result predicted by Visual
MINTEQ software and the precipitation was composed of PbCrO,4, PbSO4 and other oxides containing lead.
Otherwise, XRF and ICP were used to analyze the residual lead (II) in the filtrate and results indicated
that the concentration of Pb (II) in the filtrate was acceptable.

© 2018 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

Chromium is an important metal used for metal plating, leather
tanning, metal corrosion inhibition, and pigment productions
[1-3]. Chromium (VI) discharged from industrial activities in-
cluding electroplating, petroleum refining, alloy manufacturing
and battery production [4-9]. It is known that chromium (VI)
species such as dichromate (Cr,0,2~) and chromate (HCrO4-,
Cr042-) could cause a series of problems for humans and an-
imals because they could form non-biodegradable compounds
that affect aquatic life and cause serious health issues such as
digestive tract cancer, anemia, neurological damage, circulatory
shut down and death [10-12]. In China, it has become one of the
most commonly detected contaminants in groundwater due to
improper storage and disposal practices. Chromium (VI) has been
considered as a hazardous contaminant and there is increasing
interest in developing effective measures to remove chromium
from chromium-contaminated wastewater.

Many treatment technologies for removal of heavy metals from
wastewater have been conducted [13]. Adsorption methods based
on the high porosity, specific surface and high surface activity
of adsorbents are used to remove chromium (VI) species from
wastewater [14-16], while it is only applicable for treatment of
low concentration wastewater. Membrane filtration methods seri-
ously suffer from lack of resistance of the membranes to the harsh

* Corresponding authors.
E-mail addresses: cqupenghao@cqu.edu.cn (H. Peng),
1127753494@qq.com (B. Li).

https://doi.org/10.1016/j.jtice.2018.01.028

conditions typically found in industry wastewaters [17]. Ambient
chromium mainly exists in the oxidative states of chromium (VI)
and chromium (III). The chromium (III) species are relatively sta-
ble and have low solubility and mobility in environmental con-
ditions. In contrast, the chromium (VI) species are highly soluble
and mobile and also more poisonous than chromium (III). Mostly,
chromium (VI) species are reduced to chromium (III) species and
then treated with other technologies, like adsorption or precipita-
tion [18-21], but occupied with high dosage of reducing agent and
acid or alkaline, also large amount of chromium-containing sludge.

In this paper, chemical precipitation was chosen to recover
chromium from the solution. Lead sulfate was selected as precipi-
tation agent to precipitate chromium (VI) based on the difference
of the solubility constant between lead sulfate and lead chromate,
for which was 1.6 x 1078 and 2.8 x 1013, respectively. The effects
of parameters on the precipitation efficiency of chromium includ-
ing initial pH of solution, reaction temperature, reaction time and
dosage of lead sulfate were studied.

2. Experimental
2.1. Materials

All the reagents were analytical grade, including sulfuric acid,
potassium dichromate, sodium hydroxide, lead sulfate used for pre-
cipitation reaction and phosphoric acid and ammonium ferrous
sulfate, hexamethylenetetramine, potassium permanganate, and N-
phenylanthranilic used in the chemical analysis.

1876-1070/© 2018 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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Fig. 1. Effect of pH value on species of the solution of K*-Cr042~-Pb2t-5042-.

The chromium solution for the experiment was prepared by
dissolving potassium dichromate in deionized water. The deionized
water used in the experiments was produced by a water purifica-
tion system (HMC-WS10).

2.2. Apparatus and procedures

All experiments were performed in a glass beaker with a ther-
mostatic mixing water bath pot.

A predetermined amount of potassium dichromate and deion-
ized water was added to the beaker to produce a homogeneous
solution under constant stirring. Subsequently, the pH value of the
solution was adjusted with sulfuric acid and sodium hydroxide.
The solution was heated to a predetermined temperature. Next, the
lead sulfate was added to the beaker. After the required reaction
time had lapsed, the filtrate was separated from the precipitation
through vacuum filtration.

Titration with ammonium ferrous sulfate is used to determine
the concentration of chromium in the filtrate [22]. Precipitation ef-
ficiency of chromium is calculated using the following formula:

(G xVi =G x W)

n= v x 100% (1)

where 7 is the chromium precipitation efficiency, %; C; is the to-
tal chromium concentration in the chromium aqueous, g/L; V; is
the volume of chromium aqueous, mL; C, is the total chromium
concentration in the filtrate after the reaction, g/L; and V, is the
volume of filtrate after the reaction, mL.

3. Results and discussion
3.1. Technology principle

3.1.1. The composition in the solution of K+-Cr042~-Pb?*+-50,2~

The composition in the K,CrO4 solution was calculated by Vi-
sual MINTEQ software, including the presence form, the disso-
lution and equilibrium and the saturated state of the solid. The
calculating conditions were set with concentration of K,CrO4 so-
lution at 0.2mol/L, the dosage of lead sulfate was set as mo-
lar ratio at n (PbSO4)/n (K;CrO4)=1, n (PbSO4) /n (KyCrO4) =2,
n (PbSO4)/n (K,CrO4)=3, n (PbSO4)/n (K,CrO4)=4, reaction tem-
perature of 25 °C, pH varied from 1 to 14. The activity coefficient
of the charged materials was calculated with Davies equation [23].
The results were shown in Fig. 1.

The results shown in Fig. 1 indicated that the main species
in the solution were Cr,0,2~, CrO42-, Ht, HCrO,~, HSO4~, K,
KCr,0,~, KCrO4~, SO4%~, KSO,~, OH-, and Pb2*. The chromium
(VI) was mainly existed in form of Cr,052~, HCrO4~ and KCr,0;~
at pH <7, and then converted to KCrO,~ and CrO42~ as pH value
increased. When the pH value of solution was below 7, the lead in
the solution existed in Pb2t and PbSO,4 (aq) which was poisonous
and harmful to the environment. When the pH value increased
above 8, the concentration of Pb2* and PbSO4 (aq) was nearly 0.
Therefore, the precipitating process of chromium with lead should
be reacted at high pH value in order to avoid the environment
pollution caused by lead. Otherwise, the results showed that the
dosage of lead sulfate had little influence on the species of the so-
lution according to the results shown in Fig. 1.
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Fig. 2. Effect of pH value on SI of predicted precipitation.

3.1.2. The composition of precipitation

Saturation index (SI) was used to predict the trend of precipi-
tated and dissolved species, and was calculated based on Eq. (2).
If SI> 0, the content was in oversaturation and might precipitate;
SI=0, the content was in equilibrium state; SI <0, the content ex-
isted in form of ions in the solution:

SI = logIAP — logKs (2)

where IAP is the selected ion activity in Visual MINTEQ software,
and Ks is the solubility product constant.

The content of reaction products were predicted by Visual
MINTEQ software, the results were shown in Fig. 2. The main
products of the reaction were anglesite (PbSQ4), CrOs, larnakite
(Pb,0S0y4), litharge (PbO), massicot (PbO), Pb(OH),, Pb30,SOy,
Pb4(0H)6SO4, Pb403SO4, PbCrO4 While the SI of CrO3 was be-
low 0, it might not exist in the precipitate. SI of the main prod-
ucts increased first with the increasing of pH value and then de-
creased, different solid components occurred in different reaction
pH value. As pH below 4, the precipitation was composed of an-
glesite and PbCrO4 and not affected by dosage of lead sulfate.
As pH> 6, anglesite, larnakite, Pb(OH),, Pb30,S04, Pbs(OH)gSOy4,
Pb,03S04 and PbCrO4 all occurred in the precipitation. Espe-
cially among pH at 10-13, the precipitation was most compli-
cated almost contained all contents in which Fig. 2 showed except
CrOs.

During the precipitation process, some new oxides containing
lead would form, which was competed with chromium (VI) and
would consumed much more Pb2t, which was not beneficial for

chromium (VI) precipitation. In order to achieve effective precipi-
tation performance of chromium (VI), excessive dosage of lead sul-
fate was required.

3.2. Effect of initial pH value of solution

The results in Fig. 1 showed that the pH value of the solu-
tion affected the species in the solution and also the precipita-
tion process should be conducted at high pH value. The experi-
ments about the effect of the initial pH value of the solution on
the precipitation efficiency of chromium was preferentially inves-
tigated under the following conditions: reaction temperature of
30 °C, concentration of chromium (VI) of 0.2 mol/L, reaction time of
60 min, and dosage of lead sulfate set as molar ratio at n (PbSO4)/n
(KzCI‘O4) =1

The results shown in Fig. 3 indicated that the precipitation ef-
ficiency increased with the increasing of the initial pH value of
the solution. First, the precipitation efficiency was about 18.9% at
pH value of 6.92 and increased smoothly at pH < 12. It increased
sharply to 51.90% at pH value of 13.90, while the concentration of
chromium (VI) was much high. During the precipitation process,
some new content containing lead might form which competed
with chromium (VI) and would decreased the precipitation effi-
ciency of chromium (VI). Therefore, it should increase the dosage
of lead sulfate to achieve high precipitation efficiency of chromium
(VI). Other way, the pH value of the filtrate was between 6.7 and
9.0 according to the results showed in Fig. 3, which was easy to
treat.
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Fig. 4. Effect of dosage of lead sulfate on the precipitation efficiency of chromium.

3.3. Effect of dosage of lead sulfate

During the precipitation process, the dosage of precipitation
agent had big influence on the precipitation efficiency of chromium
(VI). The effect of dosage of lead sulfate was studied under the fol-
lowing conditions: reaction temperature of 30 °C, concentration of
chromium (VI) of 0.2mol/L, and reaction time of 60 min. The re-
sults were shown in Fig. 4.

The precipitation efficiency increased sharply with the increas-
ing of dosage of lead sulfate, especially at pH value of 13.90. The
precipitation efficiency was about 99.9% and the concentration of
chromium (VI) reduced to 0.15 mmol/L at n (PbSO4)/n (K;CrO4) =4
and pH of 13.90. And continue increasing the dosage of lead sul-
fate, the concentration of chromium (VI) would be reducing more.
In order to reduce the mass of precipitation and also achieve high
precipitation efficiency, the dosage of lead sulfate was chosen as
molar ratio at n (PbSO4)/n (K;CrO4) =4 for further experiments.

3.4. Effect of reaction temperature

During the process, the reaction velocity is followed the dif-
fusion laws and reaction temperature is an important parameter
affected the reaction during the diffusion process. High tempera-
ture will decrease the diffusion resistance while accelerate the sol-
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Fig. 5. Effect of reaction temperature on the precipitation efficiency of chromium.
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Fig. 6. Effect of reaction time on the precipitation efficiency of chromium.

ubility of the precipitation. The effect of reaction time of lead sul-
fate was studied under the following conditions: concentration of
chromium (VI) of 0.2 mol/L, initial pH value of 13.90, reaction time
of 60 min, and the dosage of lead sulfate set as molar ration at n
(PbSO4)/n (K5Cr04)=4.

The results in Fig. 5 showed that the reaction temperature
had little influence on the precipitation efficiency of chromium
(VI) at high dosage of lead sulfate of n (PbSO4)/n (K,CrO4)=4.
The concentration of chromium (VI) reduced from 0.2 mol/L to
0.15 mmol/L.

3.5. Effect of reaction time

Reaction time also plays an important role during the precipita-
tion process. It is eager for producing as many products as possible
at the shortest time and earned more economic benefits in the in-
dustry. The effect of reaction time was studied under the following
conditions: reaction temperature of 30 °C, the dosage of lead sul-
fate of n (PbSO4)/n (K,CrO4)=4, initial pH value of 13.90 and con-
centration of chromium (VI) of 0.2 mol/L. The results were shown
in Fig. 6.

From Fig. 6, it was concluded that lead sulfate played a fast pre-
cipitate rate. The precipitation efficiency could up to 99.9% at only
15 min. The concentration of residual Cr (VI) in the filtrate could
reduce to 0.08 mg/L as the reaction time increased to 60 min. In
summary, the initial pH value of solution and dosage of lead sul-
fate had big influence on the precipitation efficiency of chromium
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Fig. 7. XRD pattern of the precipitation.

(VI), while the effect of reaction temperature and reaction time
could be ignored.

3.6. XRD of the precipitation

XRD (X-ray diffraction) analysis of the precipitation was con-
ducted. Fig. 7 showed the XRD pattern of the precipitation (a)
pH=13.90, n (PbSO4)/n (K,CrO4)=1, (b) pH=13.90, n (PbSO4)/n
(K,Cr04)=4. The results showed that the contents in the precip-
itation were PbCrO4 and other lead oxides. Upon an increase in
the dosage of lead sulfate, the species in the precipitation became
more complicated. The results were consistent with the results cal-
culated in Visual MINTEQ software.

XRF and ICP [24-28] were used to analyze the residual lead
(I) in the filtrate and results indicated that the concentration of
Pb (II) in the filtrate was acceptable. In other words, it would not
make secondary pollution used lead sulfate as precipitation agent
[25,27].

4. Conclusions

Lead sulfate was used as a precipitation agent to precipi-
tate chromium (VI) from the solution according the difference
of solubility compared with lead chromate. The concentration
of chromium (VI) could reduce from 0.2mol/L to 0.0015 mmol/L
(0.08 mg/L) at pH value of 13.90 and the dosage of lead sulfate as n
(PbSO4)/n (K5CrO4) = 4. The initial pH value of solution and dosage
of lead sulfate had big influence on the precipitation efficiency of
chromium (VI), while the effect of reaction temperature and reac-
tion time could be ignored. Analysis results indicated that lead sul-
fate was all gone into the precipitation not dissolved in the filtrate
and would not cause secondary pollution during the precipitation
process.
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Leaching Kinetics of Vanadium with Electro-oxidation and H,0, in

Alkaline Medium
Hao Peng,* Zuohua Liu, and Changyuan Tao*

Chongging Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical
Engineering, Chongging University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, People’s Republic of China

ABSTRACT: A residue containing vanadium and chromium was precipitated from a wastewater mill. Electro-oxidation
technology and H,0, acting as reinforcement methods were introduced for vanadium leaching from the residue. During the
leaching process, sodium hydroxide could provide an appropriate reaction medium and promote the reaction rate of the acidic
oxides. Electro-oxidation technology and H,0, could produce some fresh and nano-/micrometer-size oxygen bubbles, which
could oxidize vanadium in low valence to high valence. The kinetics investigation indicated that the leaching process was
followed by a surface chemical reaction model, and the leaching efficiency increased along the increase of the temperature and
reaction time. The apparent activation energy decreased with the intensification of electro-oxidation technology and H,O,.
Electro-oxidation technology coupled with H,O, exhibited the lowest apparent activation energy as 6.48 kJ mol .

1. INTRODUCTION

Vanadium is an important metal used for manufacturing iron
and steel non-ferrous metals and petrochemicals because of its
excellent physicochemical properties.'~* It becomes necessary
and urgent to exploit and use the secondary resources as the
increasing market demand for vanadium compounds, including
fly ashes” and spent catalysts.” The main vanadium resources in
China were titanomagnetite7 and stone coal (carbonaceous
shale).*”

Some traditional hydrometallurgy technologies were con-
ducted to leach out vanadium from vanadium resources.
Sodium salt roasting was the commonly used technology,'”""
but some toxic gases, such as HCI and SO,, would emit during
the process and were harmful for the environment. Acid
leaching was also an efficient way to extract out vana-
dium.””">~"* However, it would lead to high acid consumption
and a high concentration of impurities. An environmentally
friendly technology called electro-oxidation was applied in
leaching out vanadium from the residue.'”~"” Vanadium in low
valence could be oxidized to high valence and formed a soluble
phase during the leaching process. Some other oxidants, such as
MnO, and KCIO;, were also added to enhance the leaching
process.'®

Because the residue used in the study consisted of vanadium
in low valence, the electro-oxidation technology and H,O, were
applied in leaching out vanadium from the residue. The effects
of the temperature and reaction time on the leaching efficiency
of vanadium were systematically investigated, and apparent
activation energy was calculated.

2. MATERIALS AND METHODS

2.1. Materials. The wastewater containing chromium(VI) and
vanadium(V) was reduced and precipitated from a mill. The residue
was the precipitation containing vanadium and chromium in low
valence. Before the experiment, the residue was first dried in an oven
overnight and then sieved for further treatment. The X-ray
fluorescence (XRF) analysis of the residue was shown in Table 1.

-4 ACS Publications  © 2016 American Chemical Society
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Vanadium in the residue existed as VOSO, and Na,(Cr,V)Si,O,,
shown in Figure 1.

Table 1. XRF Analysis Results of the Residue

component (¢} Cr Si Na S A%
amount (wt %) 41.09 14.36 12.02 9.76 12.02 1.63
component Ca Cl Fe K Mg
amount (wt %) 1.42 4.09 0.33 0.29 0.20
®
v #-Na,(Cr_,V,)Si,0,
v—NaCr(SO“)2
4-Na SO,
®-VOSO,
V-Ca,Cr,(Si0,),
PRI S
® v I I
1 1 n 1 1
0 20 40 60 80
20(°)

Figure 1. XRD pattern of the original residue.

2.2. Apparatus and Procedure. The leaching reaction was
conducted in a 250 mL beaker placed in the water bath pot equipment.
The temperature was controlled by the bath pot, with a precision of
+0.1 K. Sodium hydroxide (NaOH) and deionized water were added
to the beaker to make a homogeneous solution. Then, the residue was
added after the temperature of the solution stabilized. After the
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leaching process, the solution was separated by vacuum filtration. The
experiments conducted with electro-oxidation and H,0, were also
carried out in the batch reactor.

The concentration of vanadium in the filtrate was determined by the
titration with ammonium ferrous sulfate. The leaching efficiency (X)
of vanadium for each experiment was calculated in eq 1

_vc
MW, (1)
where V is the volume of leaching solution (mL), C is the
concentration of vanadium in the leaching solution (g/mL), M is
the initial mass of the residue added into the reactor (g), and W, is the
mass percentage of vanadium in the residue (wt %).

3. RESULTS AND DISCUSSION

3.1. Alkaline Leaching (LP1). The leaching experiments
were conducted under the following conditions: liquid/solid

100
/V
/ /A
/'/L"——_'
A
p¢ P —m—303.15K
e Sor — —e—323.15K
> —A—343.15K
2 —v—363.15K
QD
2
€ 6| .
o0 /
g n
= —
2 |}
]
40 |
b 1 1 1 1 1
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time/min

Figure 2. Effect of the time on leaching efficiency of vanadium at
various temperatures in LP1 (alkaline leaching).
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Figure 3. Effect of the time on leaching efficiency of vanadium at
various temperatures in LP2 (electro-oxidation leaching).

ratio of 4 (mL/g) and NaOH/residue mass ratio of 1.0:1.0 (g/
g). The results were shown in Figure 2.

As shown in Figure 2, the increase of the temperature could
accelerate the reaction of vanadium with NaOH in the medium.
The leaching efficiency was about 60% at 303.15 K after 120
min, while at 323.15 K, it was nearly 91%. A high temperature
would increase the leaching efficiency. This was because the
viscosity of the medium decreased with the increase of the
temperature, and the diffusion efficiency was also affected by
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Figure 4. Oxidation model for the electric field in alkaline medium.
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Figure 5. Effect of the time on leaching efficiency of vanadium at
various temperatures in LP3 (oxidation leaching with H,0,).
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Figure 6. Oxidation model for H,O, in alkaline medium.

161920 3nd facilitated the

the increase of the temperature
transportation of reactants as a sequence.

3.2. Electro-oxidation Leaching (LP2). Electro-oxidation
as an environmentally friendly technology'®'” was introduced
to leach out vanadium from the residue. The experiments
carried out were intensified with the current intensity of 1000
A/m?, liquid/solid ratio of 4 (mL/ g), and NaOH/residue mass
ratio of 1.0:1.0 (g/g). The results were presented in Figure 3.

In comparison to the results showed in Figure 2, the leaching
performance was intensified within the presence of the electric
field. The mechanism had been discussed in early experi-
ments,'® and the reaction model was expressed in Figure 4. A
new oxidant, *OH, would be formed under the electric field
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Figure 7. Effect of the time on leaching efficiency of vanadium at
various temperatures in LP4 (oxidation leaching coupled electro-
oxidation and H,0,).
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Figure 8. XRD pattern of the leaching residue.
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Figure 9. FTIR spectrum of the residue before and after leaching.

during the leaching process. Also, the anodic oxidation of
hydroxyl ions might produce some fresh and nano-/micro-
meter-size oxygen bubbles.'””' These two oxidants might
oxidize vanadium in low valence to vanadium in high valence,
which made a contribution to improving the leaching efficiency.

3.3. Oxidation Leaching with H,0, (LP3). H,0O, was

added to enhance the leaching performance of vanadium from

7804

Table 2. Wavenumber and Peaks in FTIR Spectra

NaOH + NaOH + NaOH +
original NaOH eletro-oxidation H,0, electro-oxidation +
peak residue  (LP1) (LP2) (LP3) H,0, (LP4)
1 516 S11 514 518 520
2 619
3 1111 983 995 999 975
4 1400 1373 1377 1375 1384
1496 1490 1498 1435
S 1633 1635 1629 1635 1645
6 3418 3419 3415 3419 3415
Table 3. Kinetic Models and Equations
controlling step equation”
liquid boundary layer diffusion Kt=X (4
surface chemical reaction Kt=1-(1-Xx)" (5)

diffusion through a product layer Kyt = 1 — 2/3X — (1 — X)*/?

(6)

“X is the leaching efficiency of vanadium; K;, K,, and K; were the
apparent rate constants for each kinetic model (min™'); and ¢ is the
reaction time (min).

Table 4. Apparent Rate Constants K;, K,, and K; and
Correlation Coeflicients

diffusion through

the product layer, surface chemical

liquid boundary ~ 1-2/3X—(1-X)*3 reaction,
layer diffusion, X = (il =x)"8
K, K, K;
parameter  (min~") R? (min") R? (min~") R?
NaOH (LP1)
303.1S K 0.0032 0.9223 0.000S 0.9503 0.0010 0.9703
323.15 K 0.0015 0.9344 0.0009 09156 0.0012 0.9356
343.1S K 0.0019 0.9534 0.0009 0.9663 0.0023 0.9463
363.15 K 0.0024 0.9694 0.0011 0.9761 0.0027 0.9961
NaOH + electro-oxidation (LP2)
303.1S K 0.0015 0.9187 0.0006 0.9317 0.0011 0.9528
323.15 K 0.0009 0.9262 0.0008 0.9621 0.0013 0.9977
343.1S K 0.0011 0.9167 0.0009 0.9763 0.001S 0.9813
363.15 K 0.0010 0.9439 0.0009 0.9627 0.0019 0.9948
NaOH + H,0, (LP3)
303.15 K 0.0007 0.8803 0.0003 0.9034 0.0009 0.8997
323.15 K 0.0006 0.9515 0.000S 09136 0.0011 0.9252
343.1S K 0.0008 0.9347 0.0007 0.9413 0.0014 0.9501
363.15 K 0.0010 0.9219 0.0008 0.9291 0.0016 0.9687
NaOH + electro-oxidation + H,0, (LP4)

303.15 K 0.0004 0.9130 0.0003 0.9282 0.0012 0.9395
323.1S K 0.0005 0.9326 0.000S 0.9433 0.0013 0.9416
343.1S K 0.0007 0.9204 0.000S 0.9244 0.0016 0.9561
363.15 K 0.0009 0.9147 0.0006 0.9729 0.0018 0.9829

the residue.'® The experiments were conducted under the
following conditions: liquid/solid ratio of 4.0 (mL/g), mass
ratio of NaOH/residue of 1.0 (g/g), and volume ratio of H,0,/
residue of 1.6 (mL/g), respectively. The results are shown in
Figure S.

Figure 5 showed that the presence of H,O, made a great
contribution to leach out vanadium from the residue. In the
residue particle, vanadium primarily existed in the central area
as VOSO, and Na,(Cr,V)Si,Oy and could be oxidized to
produce water-soluble vanadate in the presence of H,0,. The
reaction was described as below.

DOI: 10.1021/acs.energyfuels.6b01364
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Figure 10. Plot of leaching kinetics of vanadium at various reaction temperatures in different leaching processes (LP1, leached with NaOH; LP2,
leached with NaOH + eletro-oxidation; LP3, leached with NaOH + H,0,; and LP4, leached with NaOH + electro-oxidation + H,0,).
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Figure 11. Natural logarithm of the reaction rate constant versus
reciprocal temperature in different leaching processes (LP1, leached
with NaOH; LP2, leached with NaOH + eletro-oxidation; LP3,
leached with NaOH + H,0O,; and LP4, leached with NaOH + electro-
oxidation + H,0,).

2VOSO, + H,0, + 10NaOH
— 2Na,VO, + 2Na,SO, + 6H,0 @)

Na,(Cr, V)Si,O, + 14NaOH + 6H,0,
— 2Na,SiO; + 13H,0 + 2Na,VO, + 2Na,CrO,  (3)

During the leaching process, vanadium and chromium in the
residue broke their bonds Cr—O—V (Figure 6), formed ions,
V* and Cr*, and then moved into the solution.”* The ions in
low valence would be oxidized by H,0, and formed ions in
high valence. The reaction model was expressed in Figure 6.

3.4. Oxidation Leaching Coupled Electro-oxidation
and H,0, (LP4). Electro-oxidation technology and H,O, were
coupled to enhance the leaching performance under the
optimal conditions: liquid/solid ratio of 4.0 (mL/g), mass ratio
of NaOH/residue of 1.0 (g/g), current density of 1000 A/m?,
and volume ratio of H,O,/residue of 1.6 (mL/g), respectively.
The results were summarized in Figure 7.

From Figures 2 to 7, we could see that the leaching efficiency
of vanadium increased sharply at low temperatures and slowly
at high temperatures. Partially because the oxidation
intermediates O,, generated by anodic oxidation of hydroxyl
ions and decomposition of H,0,, had low solubility at high
temperatures, the oxidizing of vanadium was blocked, which led
to a slow increase of leaching efficiency. In addition, the

Table 5. Apparent Activation Energy with Different Leaching Processes

NaOH + eletro-oxidation
(LP2) NaOH + H,0, (LP3)

In K = =3.6174 — 974.70/T

NaOH (LP1)

In K = —2.8449 — 1134.8/T

apparent activation energy 16.58 8.10
kJ mol™")

Arrhenius equation

NaOH + electro-oxidation +
H,0, (LP4)

In K = 34378 — 1084.8/T In K= —4.182 — 779.4/T
9.02 6.48

7805 DOI: 10.1021/acs.energyfuels.6b01364
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increase of leaching efficiency was obvious in the presence of
electro-oxidation coupled with H,0,.

3.5. Residue Morphology. The change of the residue
before and after leaching was analyzed by X-ray diffraction
(XRD). Figure 8 showed the XRD pattern of the leaching
residue of LP1, LP2, LP3, and LP4. The main characteristic
peaks of main content phases disappeared and left the leaching
residue composed with an amorphous structure.

Figure 9 showed the Fourier transform infrared (FTIR)
spectra of the residue before and after leaching. The peaks and
corresponding wavenumber were displayed in Table 2. The
original residue had six peaks at 516, 619, 1111, 1400, 1633,
and 3145 cm™. After leaching, peak 1 at 516 cm™" assigned to
the symmetric stretching vibration of the Si—O band and peak
S at 1633 cm™ and peak 6 at 3145 cm™' assigned to the
antisymmetric stretching vibration of the —OH band in H,O
were left, while peak 2 at 1111 cm™' with respect to the
antisymmetric stretching vibration of the Si—O—Si band had a
little blue shift. Peak 4 disappeared, and two new peaks
occurred at around 1375 and 1496 cm ™!, which represented the
compounds of Fe,0;.

After all, after leaching, the main components left in the
residue were SiO, and Fe,O; with an amorphous structure
according to Figures 8 and 9.

3.6. Kinetics Analysis. The shrink core model was often
used to described the kinetics of the liquid solid-phase
reaction,”’***?° and there were three equations that described
the kinetic models,””>° as shown in Table 3.

The experimental data were fit into equations shown in
Table 3 to determine the kinetic parameters and rate-
controlling step. The results reported in Table 4 showed that
both eqs S and 6 fit the experimental data perfectly. Therefore,
it was clear that both the diffusion of the product layer and the
surface chemical reaction were the controlling steps. From
Figures 2, 3, 5, and 7, the leaching efficiency increased steadily,
affected by the temperature, and the leaching reaction occurred
between the residue and the concentrated NaOH solution.
Therefore, it was reasonable to describe the leaching reaction of
vanadium as mainly being controlled by the surface chemical
reaction. Therefore, eq 5 was used to express the shrinking core
model.

The reaction rates and apparent rate constant were
calculated, and the results were expressed in Figure 10. The
apparent activation energy was calculated on the basis of the
Arrhenius equations, and the results were shown in Figure 11

InK=InA - E,/(RT) (7)

where E, is the apparent activation energy, A is the pre-
exponential factor, and R is the molar gas constant.

The apparent activation energy of each leaching process
(LP1, leached with NaOH; LP2, leached with NaOH + eletro-
oxidation; LP3, leached with NaOH + H,0O,; and LP4, leached
with NaOH + electro-oxidation + H,0,) was calculated and
expressed in Table 5.

Results in Table 5 showed that the apparent activation
energy was decreased in the presence of reinforcement
methods. The apparent activation energy was decreased from
16.58 to 8.10 k] mol™', intensified with an electric field in
comparison of LP1 to LP2. Oxidized by H,O, made the
leaching of vanadium more easy; the apparent activation energy
was decreased 7.56 k] mol™' from LP1 to LP3. In LP4, the
electric field and H,0, were coupled to enhance the leaching
process; it exhibited the lowest apparent activation energy, 6.48
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kJ mol™". In other words, the presence of electro-oxidation and
H,O, during the leaching process could reduce the apparent
activation energy and enhance the leaching performance of
vanadium from the residue.

4. CONCLUSION

In this paper, the leaching kinetics of vanadium from the
residue with electro-oxidation and H,0, in alkaline medium
was investigated. The results showed the following: (1) The
leaching kinetics of vanadium followed the shrinking core
model, and the controlling step was the surface chemical
reaction. (2) Electro-oxidation technology was an efficient way
to enhance the leaching performance of vanadium. (3) H,O,
was used to intensify the leaching process. It could oxidize
vanadium in low valence, reduce the apparent activation energy
of the leaching reaction, and then make the reaction easier. (4)
The apparent activation energy was calculated as 16.58, 8.10,
9.02, and 6.48 kJ mol™' for LP1 (leached with NaOH), LP2
(leached with NaOH + eletro-oxidation), LP3 (leached with
NaOH + H,0,), and LP4 (leached with NaOH + electro-
oxidation + H,0,), respectively.
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Abstract

Classical hydrometallurgy methods such as chemical precipitation, ion exchange, solvent extraction and adsorption have been
used to recover vanadium from aqueous solutions, but the last step of these methods involves precipitation with ammonium
salts, which are harmful to the environment at high concentration. Therefore, here we tested urea as a new precipitant to
replace ammonium salts. We studied the effect of various parameters on the precipitation efficiency of vanadium. Results
showed that urea is hydrolyzed to form NH,* in acidic medium at 90 °C. Then, NH," reacts with V40,>~ and precipitates
as (NH,),V¢O,4. Nearly 95% of the vanadium was precipitated within 120 min in the system containing 2.8 g/L vanadium
and n(CON,H,)/n(V) of 0.6. The Avrami model was used to describe crystallization kinetics and analysis of the dimensions
of crystal growth. Model results show that the crystalline growth was one-dimensional and that the crystals were shaped in

columns. Overall, this study introduced a new way for urea utilization as a new precipitant to recover vanadium.
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Introduction

Vanadium is an important national strategic resource and
widely used in petrochemical industry, catalyst and iron
steel, due to their excellent physicochemical properties
(Anjass et al. 2017; Efremenko et al. 2013; Liibke et al.
2016; Smirnov et al. 2014; Wei et al. 2014; Zadorozhnyy
et al. 2014). The main resource for vanadium recovery is
titanium magnetite and stone coal in China (El Hage et al.
2019; Xiang et al. 2018; Zhang et al. 2019a, b). Many meth-
ods had been applied to recover vanadium from leaching
solution, like chemical precipitation (Kang et al. 2019), ion
exchange (Bashir et al. 2019; Bao et al. 2018; Zhu et al.
2018), solvent extraction (Yang et al. 2016; Ye et al. 2018)
and adsorption (Peng et al. 2017a, b; Prathap and Nama-
sivayam 2009). What these technologies had in common was
that the vanadium was precipitated with ammonium salts
and then roasted to produce V,Os at the last step. The key
point was to find a new precipitant to replace ammonium
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salts during the precipitation process as excessive ammo-
nium was harmful to the environment (Shu et al. 2019).

Urea [CO(NH,),] was widely used in agriculture as a
conventional fertilizer (Hermida and Agustian 2019). It was
absorbed in the form of ammonium (NH,*) by the plant,
which was produced by hydrolysis process of urea. In this
paper, urea used as a new precipitant was applied to recover
vanadium from solution. The effect of experimental param-
eters including dosage of urea, reaction temperature and
reaction time was investigated. Also, the possible reaction
mechanism was proposed.

Experimental section

Materials

All the chemicals were of analytical grade, including sodium
vanadate (Na;VO,) and urea (CON,H,), and all solutions
were prepared with deionized water with a resistivity greater
than 18 MQ/cm (HMC-WS10).

Procedures

The vanadium solution for the precipitation tests was pre-
pared by dissolving a certain amount of sodium vanadate in
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distilled water. Batch precipitation experiments were con-
ducted by adding urea and sodium vanadate solution into a
250-mL beaker with a thermostatic mixing water bath pot
at an agitation speed of 500 rpm. Various operating param-
eters on vanadium precipitation, such as dosage of urea, dos-
age of H,SO,, reaction time and reaction temperature, were
investigated. The solution was rapidly separated from the
precipitation by vacuum filtration after the reaction. And
the precipitation efficiency of vanadium (1) was calculated
using Eq. (1):

_avi-GV

% 100,
C,V, ey

where C| is the initial concentration of vanadium, g/L; C,
is the concentration of vanadium in the filtrate, g/L; and V,;
and V, are the volume of the vanadium solution before and
after the precipitation experiments, L.

Characterization

The concentration of vanadium in the solution was meas-
ured by inductively coupled plasma optical emission spec-
trometry. The crystalline phases of the precipitation were
measured by X-ray diffraction meter (SHIMADZU-6000,
Japan) with a Cu Ka radiation source under the conditions
of 1=0.15418 nm, 40 kV and 40 mA at 10° to 90°, and
the surface morphology was recorded by metallographic
microscope.

Results and discussion
Precipitation experiments

The effect of dosage of urea on the precipitation efficiency
of vanadium is shown in Fig. 1. The precipitation effi-
ciency was increased with the increase in molar ratio of
n(CON,H,)/n(V). The precipitation was about 63.03%
without the addition of urea, as vanadium was easy to
hydrolyze and formed V,05 in acidic medium at high
reaction temperature. The addition of urea could favor
the reaction and improve the precipitation efficiency of
vanadium. Nearly 95% of the vanadium was precipitated
within 120 min in the system containing 2.8 g/L vanadium
and n(CON,H,)/n(V) of 0.6. And the residual vanadium
concentration in the filtrate was decreased to 0.14 g/L.

Also, the effect of reaction temperature was also exam-
ined, and the results are shown in Fig. 2. The vanadium
was still existed as ions and did not precipitate at low reac-
tion temperature. The precipitation efficiency increased
from 4.17 to 95.06% as the reaction temperature increased
from 60 to 90 °C. In other words, high reaction tempera-
ture was beneficial for vanadium precipitation. The results
shown in Fig. 3 expressed that the precipitation efficiency
of vanadium was increased along the reaction time. Fur-
ther reaction time could improve the precipitation effi-
ciency of vanadium.
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Fig.2 Precipitation efficiency
increased with the increase

in reaction temperature. High
temperature could favor the pre-
cipitation process and achieve
high precipitation efficiency
and low residual vanadium
concentration

Fig.3 Vanadium was precipi-
tated along the reaction time.
The more the reaction time,

the higher the precipitation
efficiency and the lower the
residual vanadium concentration

Characteristics of precipitation
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The X-ray diffraction pattern of crystalline phases of the
precipitation is shown in Fig. 4a; the peaks were fitted
perfectly with the crystalline phases of (NH,),VO,

Reaction Time (min)

which indicated that the precipitation was just as
(NH,),V¢O¢. The surface morphology recorded by met-
allographic microscope (Fig. 4b) showed that the pre-
cipitation was one-dimensional and seemed like a stick.
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v-(NH,),V,0

2 6716

20(°)
(a) X-ray diffraction pattern

(b) metallographic microscope image

Fig.4 X-ray diffraction pattern indicated that the precipitation was
(NH,),V¢O,4, and metallographic microscope image for precipitation
showed that the precipitation shape of crystals was in column

Kinetic analysis

The Avrami model is widely used for the description of crys-
tallization kinetics and analysis of the dimensions of crystal
growth (Avrami 1939, 1940; Hubbes et al. 2018). The equa-
tion is as follows:

@ = Pg,[1 — exp(—ki")], 2)
where @ is the absolute amount of crystalline at time #; ¢,
is the maximum amount of crystalline; k is the reaction
constant, represented both the nucleation and growth rates;
and #n is the Avrami exponent, represented the dimension of
crystal growth.

@ Springer

Setting x as the relative amount of crystallization at time
t, Eq. (2) could be changed to Eq. (3):

1 —x = exp(—kt"). 3)
And then by taking the logarithm of Eq. (3), Egs. (4) and
(5) are obtained.

Ln(1 —x) = — k" 4)

Ln(—Ln(l —x)) =Lnk+nLnt. S))

The obtained experimental data are fitted as Eq. (5) at
reaction temperature of 90 °C, and the fitted result is shown
in Eq. (6) as follows:

Ln(—Ln(1 —x)) = 0.93Ln(s) — 3.51. 6)

The results shown in Eq. (6) indicated that the reaction
constant was calculated as 0.0299 min”, and the Avrami
exponent was calculated as 0.93, which was nearly to 1, and
the crystalline growth model was one-dimensional growth
and the crystalline was in column (Celik and Kazanc 2013;
Celik et al. 2011; Hu et al. 1994). The results were consistent
with the results shown in Fig. 4b.

Proposal mechanism

Based on the experimental results, we proposed a reaction
mechanism for the precipitation of vanadium. The vanadium
was existed as single ion like VO,* or polymer ions like
V40,2~ in acidic medium, and it was hydrolyzed to form
V,05 which had low solubility in acidic medium following
Eq. (7). Nearly 63% of vanadium could precipitate at this
stage. The addition of urea could improve the precipitation
efficiency of vanadium belonged to the reaction occurred
according to Egs. (8) and (9). The urea was hydrolyzed to
form NH," in acidic medium at reaction temperature of
90 °C. And then NH,* was reacted with V,0,¢*~ and pre-
cipitated as (NH,),V¢O,¢ (Wen et al. 2018, 2019).

VO] /V40j5 +H" = V,05 | +H,0 (7
CON,H, + H,0 + 2H* — 2NH; + CO, 8)
2NH{ + V4075 — (NH,), VO | . ©)
Conclusions

In this paper, urea used as a new precipitant was applied to
recover vanadium from solution. The effect of experimen-
tal parameters on the precipitation efficiency of vanadium
was investigated, and the reaction mechanism about urea
hydrolyzed in acidic medium was proposed. The Avrami
model was also used to describe the crystallization kinetics
and analysis of the dimensions of crystal growth. This work
introduced a new method for vanadium recovery.
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Abstract

Chromium is a potentially toxic and carcinogenic metal originating from natural processes and anthropogenic activities such
as the iron steel, electroplating and leather industries. Therefore, chromium should be removed from wastewater to avoid envi-
ronmental pollution and to recycle chromium in the context of the future circular economy. Here we briefly review aqueous Cr
species, their toxicity and methods to remove Cr such as membrane filtration, chemical precipitation, ion exchange, adsorp-
tion electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology.

Keywords Chromium - Treatment - Wastewater - Removal - Physicochemical technology - Electrocoagulation -
Electrochemical reduction - Electrodialysis - Photocatalysis - Nanotechnology

Introduction

Wastewater containing heavy metal ions is a serious envi-
ronmental problem in the world (Kyzas and Matis 2015;
Nogueira et al. 2015; Song et al. 2011). The heavy metal
present on the surface of microorganisms and inside the cell
can cause significant alterations to the biochemical cycles
of living things (Liu et al. 2019; Shakoor et al. 2020). The
Comprehensive Environmental Response Compensation and
Liability Act is categorized heavy metals in order of their
toxicity: Pb (2)>Hg (3)>Cd (7) >Cr (17)> Co (52) > Ni
(57)>7Zn (75)>U (97) > Cur (125) > Mn (140) and the
maximum contaminant level values as per Environmental
Protection Agency (EPA) is defined: Pb (0.015 mg/L), Hg
(0.002 mg/L), Cd (0.005 mg/L), Cr (0.1 mg/L), Zn (5 mg/L),
Cu (1.3 mg/L), Mn (0.05 mg/L) (Anfar et al. 2019a). Among
them, Cr is a toxicity heavy metal ion and qualifying for
inclusion in Group 1 (carcinogenic to humans) by the Inter-
national Agency for Research on Cancer (Peng et al. 2019a,
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b). It is also one of the top 20 toxic substances in super
fund controlled contaminated sites in the USA. Further-
more, Cr(VI) has several negative environmental impacts,
including reducing germination and growth of some plants,
increasing mortality and reproduction rates in earthworms,
organ damage in crayfish, detrimental effects on survivabil-
ity, growth and post-exposure reproduction of marine fish
larvae and copepods, toxic effects on gill, kidney and liver
cells of freshwater fish, and possible diatom demise. There-
fore, it is important in order to develop proper treatment
technologies for Cr(VI) removal (Adhoum et al. 2004a; Hun-
som et al. 2005) (Gallios and Vaclavikova 2008; He et al.
2020; Liu et al. 2011).

In the past decades, many researchers have done their best
to promote efficient treatment technologies for chromium
removal. These technologies are mainly classified into three
kinds: physicochemical technology, electrochemical technol-
ogy and advanced oxidation technology. Physicochemical
technologies included membrane filtration, chemical pre-
cipitation, ion exchange, and adsorption (Azimi et al. 2017).
Electrocoagulation, electrochemical reduction, electrodialy-
sis and electrodeionization have belonged to electrochemical
technology (Zhao 2018). Photocatalysis and nanotechnol-
ogy are advanced oxidation technology which is a practical
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approach in treating wastewaters (Zhao et al. 2019). All the
mentioned technologies in this paper are shown in Table 1.

Chromium species

Cr(VI) species in the Cr—H,O system are in the form of
H,CrO,, HCrO,~, Cr,0,%~ and CrO,?>". The reaction rela-
tionships of the species could be expressed as Egs. (1) to
(3), and the thermodynamic studies Cr-H,O system were
conducted to determine the chemical state of ions in the
wastewater; the calculated results are shown in Table 2.

[HCrO} ][H*] = 10°7°[H,CrO,] )
[CrO;™1[H*] = 10°*[HCrO] ] )
[HCrO; 1> = 10**[Cr,0371[H,0] 3)

To investigate the reaction mechanisms of chromium
removal technologies, the species of chromium in the
Cr(IIT)-H,0 system and Cr(VI)-H,O system was simulated

Table 1 Treatment technologies for chromium removal

with Visual MINTEQ software (Kocaoba and Akcin 2002).
The results shown in Fig. 1a indicated that the main species
in the Cr(ITI)-H,O system were Cr(OH)**, Cr(OH);(aq),
Cr(OH);, Cr**, Cry(OH)3™, Cr;(OH);* and CrOH?*. The
Cr(IIT) mainly existed in the form of Cr** at pH < 4. With
the increase in pH value, Cr** was transformed to CrOH?",
while Cr,(OH)3" was appeared at its highest mole fraction
of 12.3% at pH =3 and then decreased to nearly zero along
with the increase in pH. The form of CrOH?* reached its
maximum mole fraction at pH=4 (93.6%) and then trans-
formed to Cr(OH)3 and Cr(OH); (aq). At pH=4-7, Cr(III)
was mainly existed as CrOH**, Cr(OH)$ and Cr(OH); (aq),
while the form of Cr,(OH)3" only appeared at pH=6-8 and
its maximum mole fraction appeared at pH="7 (22.1%). The
form of Cr(OH); (aq) existed at pH =5-14 and reached its
maximum at pH=9 (99.4%) and transformed to Cr(OH);.
The form of Cr(OH),~ appeared with the increase in medium
alkalinity and became the only form of Cr(III) in the solu-
tion at pH > 14.

While the species in the Cr(VI)-H,O system was quite
simple than Cr(III), only four species appeared: Cr,0,%",
CrO,2~, H,CrO, and HCr,0,” according to the results
shown in Fig. 1b. Among these four species, H,CrO, only

No. Methods Advantages Disadvantages
Physicochemical processes Chemical precipitation Simple, effective Secondary pollution

2 Membrane Higher removal efficiency, no pol- Highly depend on materials, mem-
lution loads and sometimes lower brane pore size and composition
energy consumption

3 Ion exchange HIGH efficiency, low cost, less Highly depend on resin structure and
sludge volume and high selectivity solution environment

4 Adsorption High efficiency, simple operation and Highly depend on the solution envi-
ease of regeneration ronment

5 Electrochemical Technologies Electrocoagulation Simple, productive, ease of operation Poor systematic reactor design and

8 Advanced Technologies

Electrochemical Reduction

Electrodialysis
Photocatalysis

No further reagent

Low energy consumption

Simple design, low-cost operation,
high stability and high removal
efficiency

sacrifice of electrodes

Dependent on the electrode materials
and electrochemical surface area of
the electrode

Highly cost of electrodes
Producing unwanted byproducts

9 Nanotechnology Higher removal efficiency, low waste Increase the risk of nano-pollutants in
generation and specific uptake the environment

Table 2 Eq}lilibrium and No. Equilibrium reactions Equilibrium constants ~ References

corresponding constants of (log K)

Cr-H,O system at 298 K
H,CrO, = HCrO] +H* 0.75 Cotton and Wilkinson (1980)

2 HCrO] = Croi‘ +Ht 6.45 Cotton and Wilkinson (1980)

2HCrO; = CrzOg’ + H,0 2.2 Cotton and Wilkinson (1980)
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Fig. 1 Species of chromium in the Cr(Ill)-H,O system and Cr(VI)-
H,0 system were simulated with Visual MINTEQ software (Kocaoba
and Akcin 2002). The results shown in a indicate that the main spe-
cies in the Cr(IlI)-H,O system are Cr(OH)**, Cr(OH);(aq), Cr(OH);,

existed at low pH and accounted for little fraction. Thus, it
could be ignored. At pH <8, the Cr(VI) had existed both
in the form of Cr,0,%~ and HCr,0,", and HCr,0,~ was
nearly three times to Cr,O,%~. As pH increased, Cr,O,*~ and
HCr,0,~ were transformed to CrO,>~, which was the one
that existed in the alkaline medium.

Physicochemical processes
Chemical precipitation

Chromium occurs primarily in Cr(IIT) and Cr(VI) oxida-
tion states in aqueous solution. In the chromium removal
process, the Cr(VI) was often reduced to Cr(III), which
remained relatively stable and less poisonous and then fol-
lowed with chemical precipitation technologies (Azimi et al.
2017; Fenglian and Hong 2014). In chemical precipitation
processes, chemical precipitant agents reacted with heavy
metal ions and changed them into insoluble solid particles
(Fig. 2) (Fu and Wang 2011). Then, the precipitation could
be separated from the solution by sedimentation or filtration
(Zamboulis et al. 2004).

Hydroxide precipitation

In this process, some chemical precipitant agents like iron
salt and aluminum salt might enhance the precipitation pro-
cess and accelerate the filtration process. Heavy metal ions
had low solubility in alkaline medium; thus, the precipitation
process was often conducted in alkaline medium and the
chemical reaction was described as follows:

Cr’*, Cry(OH)3*, Cr;(OH);* and CrOH?**; the results shown in b
indicate that only four species appear: Cr,0,2~, CrO,*~, H,CrO, and
HCr,0,~

@ Precipitate agent @ Precipitation

Fig.2 Chemical precipitation model. The chemical precipitant agents
were added into the solution containing Cr(VI) or Cr(Ill) and then
generated precipitation after stirring

M"* +nOH~ — M(OH), | 4)

in which M™* was the soluble metal ions.

For chromium removal process, the Cr(VI) was first
reduced to Cr(IIT) and then some alkaline like NaOH or
NH;-H,O was added; thus, Cr(III) was precipitated as
Cr(OH);.

Direct precipitation

A direct precipitated Cr(VI) technology was conducted with
lead sulfate (Peng et al. 2018). The Cr(VI) was removed in
the form of PbCrO, based on the large difference of solubil-
ity constant of PbSO, and PbCrO,.

2PbSO, + CrO;~ + 20H™ — PbCrO, | +2SO;™ + Pb(OH),
)
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The concentration of Cr(VI) was reduced from 0.2 mol/L
to 0.0015 mmol/L at pH=13.90 and n (lead sulfate)/
n(Cr(VI))=4. Though the residual Pb concentration in the
solution was acceptable, the technology could be imple-
mented in a large scale as Pb was a poisonous metal and
showed harmful to the environment. In other way, the large
amount of precipitation was another limitation for the indus-
trial application.

Membrane filtration

Membrane filtration processes were developed and used due
to their higher removal efficiency, no pollution loads and
sometimes lower energy consumption than conventional
methods (Choudhury et al. 2018; Kumar et al. 2019). Mem-
brane processes are employed in treating water and waste-
water because of the simple separation method (Anarakdim
et al. 2020; Semghouni et al. 2020; Zhao et al. 2019). This
simple procedure is divided between different membrane
processes with minor differences. In general, three kinds of
membranes are used in separation processes called liquid,
pressure-driven and hybrid membranes. There are many
parameters that can affect the membrane process, like mate-
rials in use, membrane pore size and composition, which
lead to highly efficient and economic separation (Duan et al.
2018; Ibrahim Turgut et al. 2019). Membrane processes are
often coupled with other technologies and are divided into
five kinds: reverse osmosis (Kurniawan et al. 2006), ultrafil-
tration (Sandoval-Olvera et al. 2019), microfiltration (Azimi
et al. 2017), nanofiltration (Giagnorio et al. 2018) and elec-
trodialysis (Chen et al. 2017). Giagnorio et al. used NF270
and NF90 achieved 98.8% and 76.5% chromium removal
and also overcame the drawbacks like fouling and system
operational performance (Giagnorio et al. 2018). A mag-
netite membrane produced by oxidation of 316L stainless
steel was achieved 100% chromium removal at pH =4, and
it also showed excellent stability and strength for industrial
applications (Shi et al. 2015; Yao et al. 2018). Membrane
technique was also coupled with other technologies, like ion
exchange, adsorption, electrochemical technology, etc.

lon exchange

Historically, ion exchange was an ancient technique doc-
umented more than 100 years ago. Since then, this tech-
nique has been used for softening water to an incomparable
wider scale of applications and has become an integral part
of new technical and industrial processes (Alyuz and Veli
2009; Kurniawan et al. 2006; Lin and Kiang 2003; Mazurek
2013; McGuire et al. 2007; Xiaobo et al. 2017; Xuewen et al.
2011). Ion exchange is a reversible stoichiometric chemi-
cal reaction wherein an ion from solution or electrolyte or
molten salt is exchanged for a similarly charged ion attached
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to an immobile and insoluble solid material, maintaining the
overall electroneutrality (Dabrowski et al. 2004; Dharnaik
and Ghosh 2014; Elwakeel 2010; Li et al. 2014a; Rengaraj
et al. 2001b). In this process, an insoluble resin was used
to Cr(IIT) from the wastewater and release other ions of
similar charge without any structural change of the resin
itself (Bao et al. 2018; Fengliang et al. 2013)(Anirudhan
and Radhakrishnan 2011). The Cr(III) was recovered in a
more concentrated form by elution with suitable reagents,
after separation of the loaded resin. Resin with acidic func-
tional groups contained sulfonic acid in its structure; hence,
it could be supposed that during Cr(IIl) capturing, the phys-
icochemical interactions might take place:

3RO; —H' + Cr'* = (ROj); — Cr'* + 3H* (6)

The processes demanded ion-exchange materials with
high thermal stability, good resistance toward ionizing
radiation and efficient sorption capacity. Organic resins and
inorganic ion exchanges were both attracted much more
attention, such as zeolites, sodium titanites, titan silicates,
metal sulfides, layered double hydroxides, metal phosphates,
metal tungstate and hexacyanoferrates (Bashir et al. 2018).
Among all the available kinds, synthetic polymer resins
were preferred, such as styrene—divinylbenzene (Banno and
Yabuki 2020), gel-like resins (Ju et al. 2020), macropore
resins (Xiao et al. 2020). 5-Methyl-2-thiophene carboxal-
dehyde possessed high surface area (623 m?/g) and showed
high removal efficiency of Cr(IlI) at pH=6.5 with 6 h (Par-
ambadath et al. 2015). Tenorio found that the concentra-
tion of Cr(III) in the wastewater could be reduced to below
0.3 mg/L with ion exchange. Two commercial ion-exchange
resins named Diaion CR11 and Amberlite IRC 86 both
showed effective performance in the removal of Cr(III) from
wastewater (Cavaco et al. 2007). Gode et al. observed that
the new ion-exchange resin named Lewatit S 100 showed
great removal efficiency of Cr(III) at pH=3.5 and the adsorb
kinetics followed first-order reversible kinetics model (Gode
and Pehlivan 2006). Cation-exchange resins called IRN77
and SKNI were applied to remove chromium from water and
wastewater; the results showed that nearly 95% chromium
was removed under optimal reaction conditions (Rengaraj
et al. 2001a).

Adsorption

Adsorption technology was widely used in wastewater treat-
ment due to its high efficiency, simple operation and ease
of regeneration (Anfar et al. 2019a, b, c, d, 2020; El Haouti
et al. 2019; Li et al. 2009; Liu et al. 2006, 2010; Meirong
et al. 2012; Ouasfi et al. 2019; Shu et al. 2018a, b, 2019;
Zbair et al. 2019). Melamine possessing three free amino
groups and three aromatic nitrogen atoms in its molecule
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was also used to absorb vanadium and showed great perfor-
mance (Peng et al. 2017a; b). Our recent studies showed that
melamine achieved high adsorption capacity (2843 mg/g)
at removal efficiency of chromium (III) (98.63%) within
60 min at n (melamine)/n (Cr)=1.5 and reaction tempera-
ture at 90 °C (Peng et al. 2020). The adsorptive isotherm and
kinetic indicated that the main adsorption mechanisms for
the adsorption of chromium (III) were confirmed as electro-
static attraction and stacking interaction and the adsorption
process was a spontaneous, endothermic and physisorption
process.

Adsorption by activated carbon is one of the most stud-
ied phenomena (Anfar et al. 2019a). Many researchers have
established the efficiency of activated carbon and activated
carbon composites as adsorbents to remove many types of
pollutants including heavy metals and dyes (Elwakeel et al.
2015; Shakoor et al. 2020; Yavuz et al. 2006). The adsorp-
tion processes are often well described with pseudo-sec-
ond-order model, and the adsorption mechanism studied by
intraparticle model suggested that the adsorption processes
include four steps (Fig. 3): (1) bulk transport (the heavy
metal ions transport in the solution phase); (2) film transport
(the heavy metal ions are transported from the bulk liquid
phase to the adsorbent’s external surface through a hydro-
dynamic boundary layer or film); (3) intraparticle (diffusion
of the heavy metal ions from the exterior of the adsorbent
into the pores of the adsorbent); and (4) adsorption (Anfar
et al. 2019a).

Fig.3 Adsorption mechanism
studied by intraparticle model
suggests that the adsorption pro-
cesses includes four steps: (1)
bulk transport (the heavy metal . 4
ions transport in the solution
phase); (2) film transport (the
heavy metal ions are transported
from the bulk liquid phase to
the adsorbent’s external surface
through a hydrodynamic bound-
ary layer or film); (3) intraparti-
cle (diffusion of the heavy metal
ions from the exterior of the
adsorbent into the pores of the
adsorbent); and (4) adsorption

(Fast)

v (Slow)

Transport and reaction process

1 .Bulk transport

2. Film transport

3. Intrapaticle

In recent years, biosorption as an eco-friendly technique
for toxic metals removal had attracted much more attention
(Escudero et al. 2006; Fiol et al. 2003). In this process, the
ligands and functional groups of biomaterials were reacted
with heavy metal ions and formed complex compounds.
The major advantages of biosorption over conventional
methods were low cost, high adsorption capacity and good
selectivity (Aditya et al. 2011; Avila et al. 2014; Kanaga-
raj et al. 2014; Mishra et al. 2020). The most common
biomaterials for Cr(VI) removal were chitosan (Ngah and
Liang 1999), sludge biomass (Colla et al. 2015), nanofib-
ers (Avila et al. 2014; de Oliveira et al. 2014; Feng et al.
2020; Mohamed et al. 2017) and others (Arshid Bashir
et al. 2019; Blazquez et al. 2009; Mangwandi et al. 2020;
Niu and Volesky 2006). During the biosorption process,
adsorption of Cr(VI) was affected significantly by the pH
value of the reaction medium. At low pH, the active sites
of the biosorbents were protonated and the anionic spe-
cies could be bound on the sorbent by electrostatic forces.
Maximum uptake values of Cr(VI) were observed at pH
2.0 for tea waste (Malkoc and Nuhoglu 2007), hazelnut
shells (Bayrak et al. 2006), osage orange (Pehlivan and
Kahraman 2011) and rice straw (Chang et al. 2012). In
other studies, pH 3.0 and 1.5 were found to be optimal for
the hexavalent chromium sorption onto cork and grape
stalks (Machado et al. 2002).
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Fig.4 Eh-pH diagram of conversion of Cr(VI) and Cr(IIl). Chro-
mium occurs mainly as Cr(IIl) and Cr(VI) in the aqueous solution,
and Cr(VI) is easily reduced to Cr(IIl) with electrochemical technol-

ogy
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Cr,0,2+Fe**—Cr3*+Fe¥* 10

€
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Fig.5 Electrochemical technology model. The electrochemical pro-
cess for chromium removal often involves three steps: (1) The first
step is the formation of electrogenerated Fe(Il) species; (2) the sec-
ond step is the reduction of Cr(VI) to Cr(IIl); and (3) the third step is
the precipitation of Cr(III)

Electrochemical technology

The electrochemical technology had shown great potential
for Cr(VI) removal and attracted much more attention in
recent years. The main advantage was the clean reagent
(electron) used in the process, which was environmental-
friendly, facilitating its potential application due to the
stringent pollution regulation (Duarte et al. 1998) (Figs. 4
and 5). Besides, it also contained some other advantages
like operation versatility, amenability of automation, pro-
duction safety in mild reaction conditions (Breslin et al.
2019; Dhal et al. 2013; Rajkumar and Palanivelu 2004;
Zongo et al. 2009). Golder compared the Cr(VI) removal
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performance using electrocoagulation and chemical coagu-
lation and identified that electrocoagulation efficiency was
nearly 3 times higher than chemical coagulation using
Al or aluminum sulfate (Akbal and Camci 2010). It was
clear that electrochemical techniques could offer enormous
prospects for the development of clean, efficient and cost-
effective Cr(VI), meeting the increasingly stringent envi-
ronmental regulation.

Electrocoagulation

Among the electrochemical technologies, the most effec-
tive one was electrocoagulation, which was the electro-
chemical production of destabilization agents from sacri-
ficial anodes (such as Al, Fe) for removing pollutant and
pathogens (Adhoum et al. 2004; Ait Ouaissa et al. 2013;
Aoudj et al. 2015; Can and Bayramoglu 2010; Cheballah
et al. 2015; Fajardo et al. 2014; Heidmann and Calmano
2008; Li et al. 2019; Moersidik et al. 2020; Xu et al. 2019).
In the chromium process, the use of Al and Fe electrodes
was suggested because the elimination of chromium spe-
cies (Cr’*, CrO,*~ and Cr,0,>") was around 80% depending
on the experimental conditions. The selective of electrode
materials had a significant effect on the removal efficiency of
heavy metals or organic pollutants during the electrocoagu-
lation process (Fajardo et al. 2014; Graga et al. 2019; Kab-
dasli et al. 2009; Kim et al. 2020; Olmez-Hanci et al. 2012;
Sharma et al. 2019; Zongo et al. 2009). Aluminum, iron and
stainless steel were the most common electrode materials.
The electrocoagulation process of chromium (VI) (Al-Shan-
nag et al. 2015; Ali Maitlo et al. 2019; Garcia-Seguraa et al.
2017; Lu et al. 2016; Sahu et al. 2014; Zaroual et al. 2009;
Zewail and Yousef 2014) involved the following three steps:

The first step was the formation of electrogenerated Fe(II)
species:

Fe’ + 2H,0 — Fe?™ + +2H, + 0, + 2¢~ (6)

The second step was the reduction of Cr(VI) to Cr(III).
The reactions were described as follows: 0.5 <pH < 6.5:

6Fe’* + Cr,02” + 14H* — 6Fe’ +2Cr'* + TH,0  (7)

6.5<pH<7.5:

Cr,02” + H,0 = 2CrO;™ + 2H* (8)
3Fe** + CrO;” +4H,0 — 3Fe’* + Cr'* + 80OH~ )
pH>17.5:

Fe’*+20H™ — Fe(OH), (10)
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3Fe(OH), + CrOZ‘ + 4H,0 — 3Fe(OH); + Cr(OH); + 20H™

(11

For aluminum electrode electrocoagulation process,

Cr(VI) was reduced to Cr(IIl) in contact with cathodes (Hei-
dmann and Calmano 2008; Zongo et al. 2009):

Cr,0” + 14H" + 6e~ — 2Cr’* + TH,0 (12)
HCrO; + 7H* + 3¢~ - Cr’* + 4H,0 (13)
CrO2™ + 4H,0 + 3e” — Cr(OH); + 50H" (14)

The third step was the precipitation of Cr(IIl):
Cr** + 30H™ - Cr(OH), (15)

T. M. Zewail et al. investigated the removal behavior of
Cr(IIl) and Cr(VI) from synthetic wastewater with vertical
expanded Fe anode (Zewail and Yousef 2014). The results
showed that the Cr(III) removal efficiency was slightly
increased with the increase in current density and then
achieved its maximum at pH=_8. In contrast, Cr(VI) removal
efficiency was slightly decreased with the current density
and reached its maximum at pH=4.5. The presence of NaCl
could promote the removal efficiency of both Cr(IIl) and
Cr(VI). Feryal Akbal et al. applied the electrocoagulation
process to remove copper, chromium and nickel from metal
plating wastewater with Fe and Al electrodes (Akbal and
Camci 2011). The results showed that the Cr(VI) removal
efficiency was reached up to 100% at a reaction time of
20 min, current density of 10 mA/cm? and pH =3. Tugba
Olmez used response surface methodology to investigate
the effect of operating conditions on the removal of Cr(VI)
(Olmez 2009). The results showed that after reaction 70 min
under 7.4 A current in 33.6 mM NaCl solution, the removal
efficiency of Cr(VI) could achieve 100%.

Electrochemical reduction

Another popular technique was the electrochemical reduc-
tion, which could take place through direct reduction and
indirect reduction pathways (Frenzel et al. 2006; Jin et al.
2012; Scialdone 2009). The Cr(VI) remediation in this tech-
nology was largely dependent on the electrode materials and
electrochemical surface area of the electrode. The most com-
mon electrodes were made of PbO, coatings or dimensionally
stable anodes coatings on Ti (Almaguer-Busso et al. 2009;
Peng et al. 2019b; Rodriguez-Valadez et al. 2005). In order to
improve the removal efficiency of Cr(VI), some new cathode
materials were developed. Carbon-based electrodes, mercury-
based electrodes, bismuth film electrodes, gold electrodes,

conducting polymers and fuel cell system had attracted much
more attention.

Roberts used porous carbon felt electrodes to remove
Cr(VI), and the Cr(VI) was reduced from 50 mg/L to less
than 5 mg/L within a reaction time of 230 min at pH=3.5
(Roberts and Yu 2002). Wang (Wang and Na 2014) used car-
bon nanotube arrays to remove Cr(VI), and he found that the
carbon nanotube arrays could increase electrode surface area
up to 13 times to stainless steel mesh and the increase in elec-
trode surface area directly benefitted Cr(VI) reduction without
compromising the electrode’s ability to adsorb Cr(III). Some
results showed that the gold electrode exhibited a good reduc-
tion performance of Cr(VI) in aqueous solution (Duarte et al.
1998; Jin and Yan 2015). Jin used gold nanoparticle-decorated
TiO, nanotubes arrays for the electrochemical removal of trace
Cr(VI). The new electrode achieved 23 times activity improve-
ments than usual gold electrode due to its highly ordered with
metal-semiconductor heterojunction infrastructures and
high surface areas. The Cr(VI) was reduced and adsorbed at
pH=2.0 and then precipitated as Cr(OH); at pH=11.0, which
was easily separated (Jin et al. 2014).

Other electrochemical technologies

Some other electrochemical technologies also had attracted
much more attention in removing Cr(VI) and Cr(III) from
wastewater, like electrodialysis, electro-electrodialysis and
electrodeionization. Electrodialysis was a membrane separa-
tion process based upon the selective transport of aqueous ions
through ion-exchange membranes under the electrical driv-
ing forces (Dharnaik and Ghosh 2014; Hosseini et al. 2019;
Sadyrbaeva 2016; Strathmann 2010; Wang et al. 2013). The
recent research (Sadyrbaeva 2016) investigated the removal
performance of Cr(VI) with galvanostatic electrodialysis, the
results showed that the chromium(VI) transport rate increased
with the increase in current density and initial Cr(VI) concen-
tration, and nearly 99.5% Cr(VI) could be removed from the
feed solution. Electro-electrodialysis (EED) was a method that
integrated features of electrolysis and electrodialysis (Chen
et al. 2017; Duan et al. 2018; Tanaka et al. 2019). The issues
of this technology applied in Cr(VI) removal were usually
linked to the poor stability of the anion-exchange membrane,
the increase in the membrane resistance (Xu and Huang 2008)
and concentration polarization (Zhang et al. 2014). Thus, the
development of stable, highly conductive and selective mem-
branes was needed to improve the removal efficiency of Cr(VI)
from wastewater.
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Advanced technologies
Photocatalysis

Photocatalysis picked up its thought because of the capac-
ity to debase a wide extent of substance contaminants
(Wang et al. 2004). Photocatalysis oxidizes or lessens dif-
ferent poisonous metal particles including Hg(II), Cd (II),
Cu (II), Cr(VI), etc. During the photocatalysis process, the
heavy metals were reduced by receptive oxygen species
which were produced on acquaintance photocatalyst with
UV or visible radiation. The advantage of this technology
was the low generation of secondary pollution, harmless
products, less time and reaction requirement, while the
interfacial charge transfer and bandgap dependency would
limit the removal efficiency of Cr(VI). TiO, was the main
material for the photocatalytic decrease of Cr(VI) (Feng
etal. 2017; Han et al. 2017; Sane et al. 2018). The experi-
ment results indicated that 79% Cr(VI) was reduced at
optimal reaction conditions and the photocatalysis pro-
cess was favored in acidic medium. Zheng et al. (Zheng
et al. 2019) synthesized a carbon-coated Mg—Al layered
double oxide nanosheets to remove Cr(VI) from aqueous
solution. The result showed that the sorption capacity of
Mg—Al layered double oxide nanosheets increased and
then decreased with the increasing Mg/Al molar ratio, of
which MgsAl, layered double oxide nanosheets exhibited
the best sorption capacity. The adsorption behavior of
Mg—Al layered double oxide nanosheets was fitted well
with the Langmuir isotherm model, and the adsorption
kinetics of chromium (VI) was described by the pseudo-
second-order model.

Nanotechnology

Nanoscale objects were great adsorbents and widely used
in treating wastewaters due to their large surface area (Al-
Rashdi et al. 2013; Liu et al. 2014; Nogueira et al. 2015;
Qu et al. 2013; Serrano et al. 2009; Tang et al. 2014).
There were three kinds of nanoparticles for wastewa-
ter treatment: adsorptive, reactive and hybrid magnetic.
Nanomagnetic oxides were widely used in wastewater
treatment systems due to their high surface area, stabil-
ity and mesoporous structure, and the removal efficiency
of Cr(VI) was depended on the reaction condition and
adsorbent (Hua et al. 2012). Nano-zero-valent iron was
another useful nanoparticle used for Cr(VI) removal from
wastewater (Chen et al. 2019; Fan et al. 2020; Fenglian
and Hong 2014; Fengliang et al. 2013; Fu et al. 2017; Ron-
gbing et al. 2017; Vilardi et al. 2019). During the reaction
process, the addition of nano zero-valent iron decreased
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the pH and redox potential of the solution; chromium (VI)
was easily reduced to Cr(III), which was harmless for the
environment (Fengliang et al. 2013; Yoshino and Kawase
2013). Another nanoparticle was hybrid magnetic nano-
particles, which were widely used due to their convenient
magnetic properties, low toxicity, low price and high sur-
face-to-volume ratio (Giraldo et al. 2013; Hao et al. 2010;
Yu et al. 2013). Hu et al. (Hu et al. 2007) prepared vari-
ous types of nanoparticles for Cr(VI) removal; the results
showed that the adsorption capacities for Cr(VI) followed
the order: MnFe,0, > MgFe,0, > ZnFe,0,> CuFe,0, >
NiFe,0,> CoFe,0,.

Some other removal technologies not mentioned in this
paper were also attracted much more attention, like sol-
vent extraction (Balogh et al. 2000; Kalidhasan and Rajesh
2009; Pourmohammad et al. 2019; Semghouni et al. 2020;
Zhang et al. 2007), ultrafiltration (Huang et al. 2019; Li
et al. 2014b; Sandoval-Olvera et al. 2019), foam separation
(Ghosh et al. 2019; Lee et al. 2017; Stergioudi et al. 2015).

Conclusion

Rapid industrialization has resulted in increased utilization
of Cr ions in the last few decades to make a serious world-
wide environmental issue. Due to its hazardous and bioac-
cumulate nature, there have been numerous attempts to find
a suitable remedial action. Various conventional methods
such as membrane filtration, chemical precipitation, ion
exchange, adsorption electrocoagulation, electrochemical
reduction, electrodialysis, electrodeionization, photocataly-
sis and nanotechnology have been developed and used for
water and wastewater treatment to decrease Cr concentra-
tions. Each method has its own removal efficiency and the
specific parameters that affect the removal process. The
results are different for each method and their experimental
conditions. We conclude that in order to remove the Cr com-
pletely and efficiently, many technologies discussed above
should be used together and also some new technologies
needed to be developed.
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